US009356954B2

a2 United States Patent
Zhou et al.

US 9,356,954 B2
*May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INTERCEPTING AND SUPERVISING CALLS
TO TRANSFORMED OPERATIONS AND
OBJECTS

(71) Applicant: Shape Security, Inc., Mountain View,

CA (US)

(72) Inventors: Xiaoming Zhou, Sunnyvale, CA (US);

Roger Hoover, Granite Canon, WY

(US); Sergey Shekyan, Redwood City,

CA (US); Justin Call, Santa Clara, CA

(US)

(73)

Assignee: Shape Security, Inc., Mountain View,

CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/618,389

Filed: Feb. 10, 2015

(65) Prior Publication Data

US 2015/0207816 Al Jul. 23, 2015

Related U.S. Application Data

Continuation of application No. 14/159,374, filed on
Jan. 20, 2014, now Pat. No. 8,954,583.

(63)

Int. Cl1.
GO6F 15/173
GO6F 9/00

(51)
(2006.01)
(2006.01)

(Continued)

U.S. CL
CPC

(52)
HO4L 63/1466 (2013.01); GOGF 9/30181
(2013.01); GOGF 9/548 (2013.01);

(Continued)

Telemetry

Modified HTML, instructions 135

(58) Field of Classification Search
.................. GOG6F 21/00; GOG6F 21/128; GOGF
9/547-9/548; HO4L 29/069111-29/06938;
HO04L 29/08675; HO4L 12/2602-12/2631;
HO4L 63/1466-63/1475; HO4L
41/0246-41/0253
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3/1991 Wood et al.
5/1994 Abadi et al.

(Continued)
FOREIGN PATENT DOCUMENTS

5,003,596 A
5,315,657 A

GB
WO

2443093 A 4/2008
WO00/72119 A2 11/2000

(Continued)
OTHER PUBLICATIONS

International Searching Authority, “Search Report” in application
No. PCT/US15/12072, dated Jan. 20, 2015, 14 pages.

(Continued)

Primary Examiner — Brendan Higa
(74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP

(57) ABSTRACT

In an embodiment, a method comprises intercepting a first set
ofinstructions from a server computer that define one or more
objects and one or more original operations that are based, at
least in part, on the one or more objects; moditying the first set
of instructions by adding one or more supervisor operations
that are based, at least in part, on the one or more objects;
transforming the one or more original operations to produce
one or more transformed operations that are based, at least in
part, on the one or more supervisor operations; rendering a
second set of instructions which define the one or more super-
visor operations and the one or more transformed operations;
sending the second set of instructions to a remote client com-
puter.

19 Claims, 7 Drawing Sheets

System 00 odified HTML,

/ JavaScript, and

JavaScript, and €SS 110
€SS 190 /
\= =
=] =]
= =
€——> | Intermediary

Computer
130

ClientComputer
199

Data
Storage
140

/Cunﬁguration 132

Management
Client Compuster
150

Management
interface
170

™~

Profiling
Interface
160

US 9,356,954 B2
Page 2

(51) Int.CL
HO4L 29/06
HO4L 12/24
GOGF 9/30
GOGF 21/51
GOGF 9/54
USS. CL
CPC ...

(52)

(56)

(2006.01)
(2006.01)
(2006.01)
(2013.01)
(2006.01)

GO6F 21/51 (2013.01); HO4L 41/0253
(2013.01); HO4L 63/0281 (2013.01); HO4L
67/42 (2013.01); GO6F 2209/542 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

5,870,769 A *
5,987,611 A *

6,006,328 A
6,170,020 Bl
6,275,789 Bl
6,401,077 B1 *

6,938,170 Bl
6,957,229 Bl
7,103,180 Bl
7,180,895 B2
7,480,385 B2
7,580,521 Bl
7,707,223 B2
7,836,425 B2
7,895,653 B2
7,940,657 B2
7,975,308 Bl
8,020,193 B2
8,170,020 B2
8,200,958 B2
8,220,054 Bl
8,266,202 Bl
8,516,080 B2*

8,548,998 B2
8,584,233 Bl
8,601,064 Bl
8,676,273 Bl
8,954,583 Bl
2002/0016918 Al
2003/0159063 Al
2004/0101142 Al
2004/0162994 Al
2004/0230889 Al
2004/0249938 Al*

2006/0015941 Al
2006/0034455 Al
2006/0053295 Al
2006/0156278 Al
2006/0195588 Al
2007/0064617 Al
2007/0074227 Al
2008/0025496 Al
2008/0222736 Al
2008/0229394 Al
2008/0244078 Al
2008/0250310 Al
2008/0320567 Al*

2009/0144829 Al
2009/0193497 Al
2009/0193513 Al
2009/0216882 Al*

2009/0249310 Al

2/1999
11/1999

12/1999
1/2001
8/2001
6/2002

8/2005
10/2005
9/2006
2/2007
1/2009
8/2009
4/2010
11/2010
2/2011
5/2011
7/2011
9/2011
5/2012
6/2012
7/2012
9/2012
8/2013

10/2013
11/2013
12/2013
3/2014
2/2015
2/2002
8/2003
5/2004
8/2004
11/2004
12/2004

1/2006
2/2006
3/2006
7/2006
8/2006
3/2007
3/2007
1/2008
9/2008
9/2008
10/2008
10/2008
12/2008

6/2009
7/2009
7/2009
8/2009

10/2009

Freund GOGF 17/30899
707/E17.119
Freundoooeve GO6F 21/552
726/4
Drake
Blakeney
Moser
Goddenccun. GO06Q 30/06
705/26.8
Kraft
Dyor
McGregor
Smith
Weber
Spies et al.
Zubenko et al.
Rubin et al.
Calo et al.
Perreault
Satish et al.
Bhola et al.
Oliver et al.
Coppola et al.
Tu
Colton et al.
ChOoW ...ooovvvvrnne GOGF 17/30902
709/203
Plotnik
Yang
Liao
Fujisaki
Zhou et al.
Tucker et al.
Apfelbaum et al.
Nasypny
Cohen
Ishiyama
Bunch ..o HO04L 12/2602
709/224
McKenna
Damgaard et al.
Madhusudan et al.
Reager
Pennington et al.
Reves
Naidu et al.
Smith et al.
Boodaei et al.
Stering et al.
Viljuen et al.
Chen
Shulman HO04L 63/1416
726/4
Grigsby et al.
Kikuchi
Agarwal et al.
Britton HO04L 12/2602
709/224
Meijer et al.

2009/0282062 Al 11/2009 Husic

2010/0037150 Al 2/2010 Sawant

2010/0131512 Al* 5/2010 Ben-Natan GO6F 17/30306
707/741

2010/0257354 Al 10/2010 Johnston et al.

2010/0262780 Al 10/2010 Mahan

2010/0287132 Al 11/2010 Hauser

2011/0015917 Al 1/2011 Wang et al.

2011/0022846 Al 1/2011 Ginter et al.

2011/0107077 Al 5/2011 Henderson et al.

2011/0255689 Al 10/2011 Bolotov et al.

2011/0296391 Al 12/2011 Gass et al.

2012/0022942 Al 1/2012 Holloway et al.

2012/0030248 Al 2/2012 Blinnikka

2012/0096116 Al 4/2012 Mislove et al.

2012/0124372 Al 5/2012 Dilley et al.

2012/0173699 Al* 7/2012 Niemela HO4L 63/101
709/224

2012/0174225 Al 7/2012 Shyamsunder

2012/0180021 Al 7/2012 Byrd et al.

2012/0198528 Al 8/2012 Baumhof

2012/0255006 Al 10/2012 Aly

2013/0041986 Al 2/2013 Colton et al.

2013/0091582 Al 4/2013 Chen et al.

2013/0198607 Al 8/2013 Mischook et al.

2013/0232234 Al 9/2013 Kapur et al.

2014/0089786 Al 3/2014 Hashmi

2014/0189499 Al 7/2014 Gigliotti

2014/0223290 Al 8/2014 Hathaway

2014/0281535 Al 9/2014 Kane

2014/0359571 Al 12/2014 Sasikumar et al.

2015/0067853 Al 3/2015 Amrutkar

2016/0028760 Al 1/2016 Yang et al.

2016/0057111 Al 2/2016 Call et al.

FOREIGN PATENT DOCUMENTS

WO WO002/093369 Al 11/2002

WO WO02010046314 Al 4/2010

WO WO02013091709 6/2013
OTHER PUBLICATIONS

Currie et al., In-the-Wire Authentication: Protecting Client-Side
Critical Data Fileds in Secure Network Transactions, dated 2009 2nd
International Con. Adapt. Science & Tech. IEEE, pp. 232-237.
European Patent Office, “Search Report” in application No. PCT/
US2014/023635, dated Jan. 21, 2015, 11 pages.

Sedaghat et al., “On-The-Fly Web Content Integrity Check Boosts
User’s Confidence”, Communications for the ACM, vol. 45, Issue 11,
dated Nov. 2002, 5 pages.

European Patent Office, “Search Report” in application No. PCT/
US2015/031361, dated Jul. 28, 2015, 13 pages.

Matsunaka et al., “Detecting and Preventing Drive-By Download
Attack via Participative Monitoriing of the Web”, Information Secu-
rity, dated Jul. 26, 2013, 8th Asia Joint Conference, pp. 48-55.

Li et al., “WebShield: Enabling Various Web Defense Techniques
Without Client Side Modifications”, dated Aug. 15, 2009, 18 pages.
European Patent Office in application No. PCT/US2014/068133,
dated Apr. 7, 2015, 14 pages.

Claims in European Application No. PCT/US2014/068133, dated
Apr. 2015, 16 pages.

Hofmeyr et al., “Intrusion Detection Using Sequences of Systems”,
Journal of Computer Security 6, dated Aug. 8, 1998, 30 pages.
International Searching Authority, “Search Report” in application
No. PCT/US2015/049024, dated Jan. 19, 2016, 10 pages.

Claims in application No. PCT/US2015/049024, dated Jan. 2016, 8
pages.

U.S.Appl. No. 14/329,718, filed Jul. 11,2014, Office Action, Mailing
Date Feb. 3, 2016.

U.S. Appl. No. 14/099,437, filed Dec. 6, 2013, Notice of Allowabil-
ity, Mailing Date Jan. 25, 2016.

* cited by examiner

US 9,356,954 B2

Sheet 1 of 7

May 31, 2016

U.S. Patent

09T
a0eLislu|
3unyold

0/T
BT
uswodeuein

0ST
iondwo) jual)
uswaseuen

/

OTT SS2
pue ‘1dioseaer

TALH payipowun

ZET uonesnsiyuo) _

0€T
i3ndwion

Aieipaunsaiu]

/

00T WaisAg

)
ovt

> 38eJ035

ereq

o
N—

661

Jaindwiodyuaid

/

GET SUOIDNIISUY
Alawajsy

\
pue ‘dudgener
“TNLH PRYIPOIN

1Dl

06T SS2

US 9,356,954 B2

Sheet 2 of 7

May 31, 2016

U.S. Patent

pd
-

0Lt
20eLI1u|
duijjoid

0SsT

Ja1ndwo) udyd _

wawadeuein 091
30e}ISIU|

Juswadeuen
EEEEEEE - -

VAN RARA ANN RARA AN NARA ANN NARA AANG AR
LN

:

i
E
E
E
E
E

M& }02030.44

1434
3NPOIA
AEEHN)

/

Moo @O WOD GIO0 000 SON MO0 G000 W00 SO0 MOD 00O 0d

Ve

0S¢
J3jpueH
Answs|al

y

9¢€T
puaoeg SENTSTITIT]
J9smaoig pieMIO
we ove
Jswiojsued| alols
EINETEN uolesuey

8€C
3|NPOAl
Jansas
[090304d

Jarndwon

:
:
: 66T
:
: WD

0ET J4ondwio] Aseipauuialuy

ooUT Wem D90 MO DOUE WMOW DOOD MO DORR MO OOOT MU MORY TOR DOUR UM MO0 UUNT MOT TON MOT UM MR TeN Mew 9 aeew

¢ 'O

US 9,356,954 B2

Sheet 3 of 7

May 31, 2016

U.S. Patent

0€T
Jondwio)

Aleipawiialu|

€ Ol

91¢ l1ed

t
§
§
i
POYISIN POWLIO)SURL] j

<€
;
lled poyien <€
poylsiN paxdooid I'4 bTE 1IED 5
pamoj|y pourein ;
=D
) pGE 199[q0 NdS
;
<€
TIENed
popsn
/ pauwsojsuenun
0SEWOQ |
19(q0 g
;
;

DO0E JUBLWUOHAUT awiuny

GGT 1asmolg

US 9,356,954 B2

Sheet 4 of 7

May 31, 2016

U.S. Patent

¥ "Old

08% ¥3.LNdNOD LNIITO ILON3Y
3H1L OL SNOILONYLSNI 40 135 ANOO3S ¥ ON3S

+

0% NOILYHNOIINOD V NO 43Svd
SNOILONYLSNI 40 13S M3IN IHL OL SNOILVHIHO HOSIAYIANS
¥ 4aV ANV SNOILVHId0 FHON ¥O INO WHOASNYHL

!

0€%7 S123190 FHOW HO INO WHO4SNVHL

!

027 SNOILONYLSNI Q3 1d3OYILNI IHL ISHVd

1

017 ¥3LNdINOD N3O FLONWIY V O1 ¥3LNdWOD ¥HIAY3S
V NOY4 SNOILONHLSNI 40 138 LSHId ¥V 1d30d3INI

US 9,356,954 B2

Sheet S of 7

May 31, 2016

U.S. Patent

0%G NOILYHIdO WHO443d

G "ol

095
H3LNdNCI AMYIAIWHILNI
Ol VLva AYLINITFL ANIS

A

S3A

GBS ILYNINYAL

055 évivd

0l a3moTY

0F% cd3141IN3al
3IHL ONISN 103740
JHL FONFH343H

AdLINETEL
aN3s

029 (NOILYY3dO
IHL TWVO
0L aImoTv

0TS YIIHINIAINY A9 1030 NV STONFHIITY
1VHL NOILYH340 NV OL TTvO V 1d30d31NI

US 9,356,954 B2

Sheet 6 of 7

May 31, 2016

U.S. Patent

994

599 ¥3LNdWOD INFITO ILOWIY FHL OL SNOILONYLSNI
LdIMOSVAVE ANV TWLH 40 138 M3IN 3H1L AN3S

i

0599 SNOILONYLSNI 1dIHISYAVTP
ANV TWLH 40 138 M3N ¥ 30N00dd OL SNOILONYLSNI
(3WHO4SNYYL 3HL OL SNOLLONYLSNI HOSIAYIANS AdV

+

GO SHIIHILNIAI GINHOLSNYYL OL SNOILONYLSNI
LdIGOSVYAVI HO/ANV TWLH A3Ld30H3LNI IHL NI SH3IHILNIdI
133rg0 TWYNIDIHO W04 STONFHI4TH WHOISNVYL

+

OF9 SNOILONYLSNI FHL NI G3INIZ3A SLO3rg0 HO/ONY
SNOILLYY3dO FHOW HO INO SWHOASNVYL ANV SNOILONYLSNI
LdIMOSYAYT ONV TWLIH 03143043 LINI IHL 3SHvd

A

GE9 ¥3ISMOHE 93M YV ONINNNY

HIAYIS 93M Y WO LdIYOSYAVP ANV WNLH Ld3OH3iNI

029 NOILYHNOIANOD ¥V 3LYAdN GNY FOVAHILNI

INFNWIFOVYNVIN Y HONOUHL LNdNI IAIFO3Y

a

GZ9 OVAYILNI
435N ONITIH0Hd Y HONOYHL VAYA ONIIH0Hd AVidSIa

H3LA4NOD INJIND FLONWIH ¥V OL d1iH ¥3A0 HALNANOD (-

!

029 Y1va ONITI40Yd 34018

!

G193 V1VA ONITIH0Yd LOVHLIXT

!

019 V1VQ AYLIWNITEL FAIZ03N

US 9,356,954 B2

Sheet 7 of 7

May 31, 2016

U.S. Patent

1SOH

0L

91z
TOYINOD
d0sdN0

j2%4
30IA3A LNdNI

el \ YNIT i 81
MHOMLIN SHOMLEN JOVAHALNI 07
4<QQ | NOILYOINAWNOD H0SS300ud
9z1
207
sng
dsl ;
1INM3LINI @
| oz g0z 907
" 30IA30 AHOWAW
824 0¢z
NIAYES JIOVHOLS Woy NIVI

b
AV1dSId

L Old

US 9,356,954 B2

1
INTERCEPTING AND SUPERVISING CALLS
TO TRANSFORMED OPERATIONS AND
OBJECTS

PRIORITY CLAIM

This application claims the benefitunder 35 U.S.C. §120 as
a Continuation of application Ser. No. 14/159,374, filed Jan.
20, 2014, titled “Intercepting and Supervising Calls to Trans-
formed Operations and Objects”, the entire contents of which
are hereby incorporated by reference for all purposes as if
fully set forth herein. The applicant(s) hereby rescind any
disclaimer of claim scope in the parent application(s) or the
prosecution history thereof and advise the USPTO that the
claims in this application may be broader than any claim in
the parent application(s).

FIELD OF THE DISCLOSURE

The present disclosure generally relates to security tech-
niques applicable to client/server systems, and relates more
specifically to techniques for determining whether trans-
formed operations and/or objects are successfully trans-
formed and for enforcing use of the transformed operations
and/or objects.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

Computer fraud, such as credential stuffing, advanced
application denial of service attacks, ratings manipulation,
fake account creation, reserving rival goods attacks, ballot
stuffing attacks, web site scraping attacks, vulnerability
assessments, and stack fingerprinting attacks, is big business
for fraudsters. As a specific example, fraud can be perpetrated
by obtaining financial or personally identifying information
that end users provide while using a browser to communicate
with an application server computer. In an exploit commonly
termed “Man in the Browser”, a user’s computer can be
infected with malicious code that collects data from legiti-
mate communications, such as communications with the
user’s bank. After the communications have been decrypted,
for example, by a web browser on the user’s computer, the
malicious code may gather data that is displayed in particular
fields or sections in the decrypted web page and provide the
data to a malicious user or computer. Malicious code may
perform actions on a legitimate user’s behalf, using already
established trust communication channels and trusted
browser environments.

Malicious code may also gather data that is entered by a
user before the user’s data is encrypted and sent to the
intended recipient. For example, a user may enter account
information into a web browser that is displaying a web page
from the user’s bank. The web page may be a login page to
access the user’s account information and funds. The mali-
cious code may scan particular fields in the web page for the
user’s account information before the user’s account infor-
mation is encrypted and sent to the user’s bank, and then send
data obtained from those fields to a malicious user or com-
puter. Web browsers were first developed and deployed in the
early 1990’s, and thus there has been a need to improve

20

25

35

40

45

60

2

browser security, web server security, web-based application
security, and data security at and/or between end points.

SUMMARY

The appended claims may serve as a summary of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates a system comprising a server security
system, in an example embodiment.

FIG. 2 illustrates a web infrastructure in an example
embodiment.

FIG. 3 illustrates a more detailed view of a web browser, in
an example embodiment.

FIG. 4 illustrates a process for adding a set of supervisor
operations to a set of instructions and sending the set of
instructions to a client computer, in an example embodiment.

FIG. 5 illustrates a process for a supervisor unit intercept-
ing a call and implementing one or more modes, in an
embodiment.

FIG. 6 illustrates a process for retrieving telemetry data,
updating a configuration based on profiling data, adding a
new set of supervisor operations to a set of intercepted
instructions based on the updated configuration, in an
example embodiment.

FIG. 7 illustrates a computer system upon which an
embodiment may be implemented.

While each of the drawing figures illustrates a particular
embodiment for purposes of illustrating a clear example,
other embodiments may omit, add to, reorder, and/or modify
any of the elements shown in the drawing figures. Further-
more, while the instructions discussed in each example
embodiment are HTML and JavaScript instructions, in other
embodiments, the instructions intercepted and generated by
the intermediary computer need not be HTML and/or JavaS-
cript instructions.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 Terms

2.0 General Overview

3.0 Network Topology

3.1 Browser
3.1.1 Browser Frontend
3.1.2 Supervisor Unit

3.2 Web Infrastructure

3.3 Intermediary
3.3.1 Protocol client module
3.3.2 Browser Backend
3.3.3 Forward Transformer
3.3.4 Protocol server module
3.3.5 Transaction Store
3.3.6 Reverse Transformer
3.3.7 Telemetry Handler

US 9,356,954 B2

3

3.4 Management Computer
4.0 Process Overview
4.1 Mode Processes
4.1.1 Profiling Mode
4.1.2 Enforcing Mode
4.1.2.1 Enforcing Transformed Operations
4.1.2.2 Enforcing Transformed Object Identifiers
4.1.3 Compatibility Mode
4.1.4 Selectively Intercepting Calls
4.1.5 Updating Calls to Transformed Operations
4.1.6 Example Process for a Supervisor Unit
4.2 Adding A Set of Supervisor Operations To A Set Of
Instructions
4.3 Adding a Set of Supervisor Operations to a Set Of
Instructions Based On an Updated Configuration

5.0 Implementation Mechanisms—Hardware Overview

6.0 Other Aspects of Disclosure

1.0 Terms

In certain embodiments:

A “computer” may be one or more physical computers,
virtual computers, and/or computing devices. As an example,
a computer may be one or more server computers, cloud-
based computers, cloud-based cluster of computers, virtual
machine instances or virtual machine computing elements
such as virtual processors, storage and memory, data centers,
storage devices, desktop computers, laptop computers,
mobile devices, and/or any other special-purpose computing
devices. Any reference to “a computer” herein may mean one
or more computers, unless expressly stated otherwise.

An “object” may be a data structure that can be identified
by an identifier and/or a relationship with another object. For
example, an object may have a unique identifier that is a
string, such as a name, customer number, or username.
Accordingly, the object may be referenced and/or retrieved
using the identifier. Also for example, if a particular object is
the first child object of a parent object, then the particular
object may be referenced and/or retrieved using a pointer to
the parent object and then retrieving a pointer to the first child
object. A browser and/or runtime environment may provide
one or more Application Programming Interfaces (“APIs”)
for referencing and/or retrieving objects within a Document
Object Model (“DOM”). The one or more APIs may allow a
user to reference and/or retrieve an object by unique identi-
fier, and/or a relative and/or absolute location in a DOM.
Selector APIs and XPaths are two examples of APIs that may
be available in a browser to reference and/or retrieve objects
within a DOM. An object may be a particular type of object.
For example, one object may be a button, another object may
be an input, or specifically a text field, and another object may
be an image.

An “attribute” may be data that identifies and/or describes
the appearance, behavior, and/or content of an object. For
example, an attribute may be a unique identifier, such as a
name. An attribute may indicate that an object is a type of text
field, text area, checkbox, and/or radio button. An attribute
may indicate that an object is a type of password text field;
accordingly, a client application rendering the text field object
on a monitor need not cause the characters that are entered
into the field object to be displayed. An attribute associated
with the text field object may be updated to include the value
entered in the text field. Other attributes may define or
describe dimension, position, color, visibility, value, and any
other functional or visual aspect of an object.

A “document object model” (“DOM”) may be a cross-
platform and language-independent representation of one or
more objects that are interrelated. For example, a DOM may
represent one or more objects in an object tree and/or hierar-

10

25

40

45

50

4

chy. An object within the hierarchy may be a parent object,
which has one or more child objects. A child object may also
have one or more child objects.

“Creating, updating, and/or removing an object” or “oper-
ating on an object” may mean creating, updating, and/or
removing a data structure in memory that represents an
object, an object’s attributes, and/or relationships between an
object and one or more other objects. Additionally, “operating
on an object” may mean performing one or more operations
that use an object, attribute, and/or relationship between an
object and one or more other objects as input. Because these
processes directly or indirectly involve changing the state of
registers or other structures in electronic digital memory cir-
cuits, the processes necessarily involve using a computer to
transform the state of tangible things.

An “operation” may be any function, method, script, and/
or any other code, which when executed operates on an
object. In an embodiment, operations may be objects, and
therefore, for purposes of brevity, an “operation” may mean
an operation or object.

A “base operation” may mean an operation that is defined
by a runtime environment or common library. For example,
the DOM API method commonly aliased as getElementByld
may be a base operation, since the method frequently defined
in modern JavaScript runtime environments in some embodi-
ments.

“Instructions” may mean one or more codes that define one
or more objects and/or one or more operations. For example,
instructions may comprise HyperText Markup Language
(“HTML”), eXtensible Markup Language (“XML”), cascad-
ing style sheets (“CSS”), JavaScript, and/or any other stan-
dard or proprietary languages or codes that define objects,
attributes, relationships between objects, and/or operations.

“Performing instructions” or “executing instructions” may
mean creating one or more objects and/or performing one or
more operations defined by the instructions.

A “runtime environment” may mean a software or hard-
ware layer that implements the core behavior and/or base
operations of a programming language. For example, a Java-
Script runtime environment may implement the core behavior
and/or base operations of the JavaScript programming lan-
guage. Additionally, the runtime environment may maintain
data structures in memory that are defined in a program writ-
ten in the programming language. Because these processes
directly or indirectly involve changing the state of registers or
other structures in electronic digital memory circuits, the
processes necessarily involve using a computer to transform
the state of tangible things.

“Data” may mean any data and/or instructions in electronic
digital memory.

An “attribute map” may be a map from one attribute name
and/or value to one or more other names and/or values. For
example, assume an object has an attribute, “id”, which
defines a unique identifier: “MyObject”. An attribute map
may associate “MyObject” with a different unique identifier,
such as “MySecureObject”. Additionally, an attribute map
may be used to map a modified attribute name and/or value to
an original name and/or value. An attribute map may be an
operation, hash map, and/or any other method or associative
data structure.

A “DOM map” may be amap from a first DOM to a second,
different DOM. For example, a DOM map may be a collec-
tion of attribute maps. Each attribute map in the DOM map
may be an attribute map for an attribute of an object in a first
DOM with a modified attribute in a second DOM. Addition-
ally or alternatively, a DOM map may map one hierarchy to
another, different hierarchy, and back again. For example, a

US 9,356,954 B2

5

DOM map may modify a relationship between a first object
and a second object, such that a first object is not related to a
second object in a first DOM, and the first object is a parent
object to the second object in the second DOM.

A “browser” may be one or more computer programs or
other software elements stored in electronic digital memory
and running on a computer that receives instructions from a
server computer, performs one or more of the received
instructions, causes to display content, provides a user inter-
face (“UI”) to receive user inputs, and/or receives and
responds to one or more inputs from a user based on or
according to the one or more performed instructions. A
browser and/or components of a browser may be imple-
mented into an application. For example, a browser and/or
components of a browser may be implemented into a standa-
lone, web-based, and/or mobile application as part of a web
view, and/or web view controller, to send and/or receive data
over HT'TP and/or other protocol. A user may use a browserto
send data to a server computer. The server computer may
respond with additional instructions.

A “headless browser” may be a browser that does not cause
visually displaying or rendering graphical images of objects
that are defined in a set of received instructions according to
the received set of instructions. Additionally or alternatively,
a “headless browser” may be a browser that does not respond
to user inputs according to a set of received instructions.
Additionally or alternatively, a “headless browser” may simu-
late user actions, such as scrolling clicking a button, and/or
selecting an element.

“Sending and/or receiving data over HT'TP” may mean
sending and/or receiving data and/or instructions using
HyperText Transfer Protocol. Additionally or alternatively,
“sending and/or receiving data over HTTP” may mean send-
ing and/or receiving data and/or instructions using HTTP on
top of another protocol, such as Secure Socket Layer and/or
Transport Layer Security (“SSL/TLS”) protocols, which add
security capabilities to HTTP messages, and is commonly
known as HTTP Secure (“HTTPS”). Additionally or alterna-
tively, one or more other protocols may be used, such as
SPDY.

A “web browser” may be a browser that sends and/or
receives data over HTTP. For example, a web browser may
receive instructions comprising HTML, CSS, and/or JavaS-
cript over HTTP.

A “supervisor operation” may be an operation that moni-
tors, reports on, and/or regulates use of one or more objects,
operations, and/or operations that reference one or more
objects. For example, a supervisor operation may monitor,
enforce, and/or report how one or more operations reference
objects in a DOM, whether transformed objects and/or opera-
tions are transformed correctly, whether calls to original
objects and/or operations are still made despite having been
replaced with transformed objects and/or operations.

A “supervisor unit” may be a set of supervisor operations in
a layer that is positioned logically between a browser, and/or
runtime environment of a browser, and the content loaded
and/or executed within the browser, such as objects within a
DOM and/or one or more operations that operate on objects in
the DOM. A supervisor unit may be implemented as a set of
one or more supervisor operations. Instrumentations to moni-
tor, enforce, and/or provide feedback about a set of supervisor
operations are further discussed in detail herein.

“Supervisor unit instructions” or “supervisor instructions”
may be instructions that define and/or implement one or more
supervisor operations. Additionally, “supervisor unit instruc-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions” or “supervisor instructions” may be instructions,
which when executed generate and/or implement a supervi-
sor unit.

“Adding supervisor operations”, or “adding a supervisor
unit”, to a set of instructions may mean adding supervisor
instructions to another set of instructions. For example, an
intermediary computer may intercept instructions from a web
server, add instructions for a supervisor unit, modify the
intercepted instructions, and send the modified instructions,
which include the instructions that define one or more super-
visor operations, to the intended client recipient.

“Telemetry data” may mean any data generated and/or
related to the operations of a supervisor unit. Additionally or
alternatively, telemetry data may mean data that describes
which operation(s) were called, what parameters were
passed, the call stack that led up to the called operation(s),
which object(s) were referenced, and/or any other informa-
tion regarding the state of a runtime environment or the super-
visor unit.

A “transformed operation” and/or a “transformed object”
may mean an operation and/or object that has been modified
based on any real-time polymorphic method. For example,
assume an alias for an operation is “document.getElement-
Byld”. The transformed operation may have a different alias,
such as “document.getSecureObjectByld”. Also, for
example, assume an object has an attribute, “id”, which
defines a unique identifier: “MyObject”. The transformed
object may have a different unique identifier, such as “MySe-
cureObject”. Additionally or alternatively, new functionality
may be added to a transformed operation and/or object. Addi-
tionally or alternatively, functionally may be removed from a
transformed operation and/or object.

A “page” or “web page” may be a set of instructions that
define one or more objects and/or operations that may be
executed concurrently and may be visually displayed
together. For example, in response to a request from a client
computer, a “home page” may be sent to the client computer.
The home page may be a set of instructions that a web server
sends to a remote client computer if no parameters are
included in the request.

A “bot” may mean a computer and/or software executed by
a computer that automates sending and/or receiving data. For
example, a bot may be a web scraper, web crawler, automatic
web browser, headless browser, and/or any other tool
designed to submit and/or receive data from one or more web
servers. A bot may comprise complex logic designed to
respond to data received from one or more web servers.

2.0 General Overview

Modifying instructions sent from a server to a browser may
prevent, and/or reduce the effectiveness of, one or more vari-
ous attacks, such as a denial of service (“DOS”) attack, cre-
dential stuffing, fake account creation, ratings or results
manipulation, man in the browser attacks, reserving rival
goods or services, scanning for vulnerabilities, and/or exploi-
tation of vulnerabilities. For example, each time a web page is
requested, such as an account creation page, order page,
voting page, and/or other page from a web server computer,
an intermediary computer may intercept the instructions sent
from the web server. The intermediary may transform the
operations and/or objects in the original set of instructions to
produce a new set of instructions. The intermediary may send
the new set of instructions to the browser that requested the
web page.

Each time the intermediary intercepts instructions from the
server, the intermediary may generate new, different instruc-
tions to send to the browser. Thus, a bot requesting the same
page over and over may receive a different set of instructions

US 9,356,954 B2

7

after each request and may not observe the same one or more
operations and/or objects twice. Without receiving the same
one or more operation aliases and/or identifiers, the bot may
be incapable of determining what data should be entered in
and/or associated with each field to collect data, create a fake
account, order and/or reserve one or more goods or services,
vote, add malicious SQL, and/or submit any other malicious
content.

To manage the new set of instructions including detecting
potential operational changes that are introduced, the inter-
mediary may include a set of supervisor operations in the new
set of instructions. The set of supervisor operations may inter-
cept calls to one or more operations and/or objects. In
response to intercepting a call, the set of supervisor opera-
tions may determine whether the call is allowed, report telem-
etry data indicating that the call was made and which opera-
tion(s) and/or object(s) were referenced, modify the call,
report the call, and/or block the call. The features of the set of
supervisor operations are discussed in detail herein.

An administrator may configure the set of supervisor
operations for each operation, object, web page, and/or web
site to which the set of supervisor operations is added. For
example, based on telemetry data received from previous
supervisor operations, an administrator may instruct the inter-
mediary to generate a set of supervisor operations that
imposes one or more modes on one or more operations and/or
objects within a page. In an embodiment, a mode may pro-
hibit calls that reference an original operation and/or object.
Additionally, the mode may allow calls that reference a cor-
responding transformed operation and/or object. Another
mode may allow calls to an original operation and/or object,
but may report whether a corresponding, transformed opera-
tion and/or object returns the same result.

In an embodiment, a method comprises intercepting a first
set of instructions received from a server computer that define
one or more objects and one or more original operations that
are based, at least in part, on the one or more objects; modi-
fying the first set of instructions by adding one or more
supervisor operations that are based, at least in part, on the
one or more objects; transforming the one or more original
operations to produce one or more transformed operations
that are based, at least in part, on the one or more supervisor
operations; rendering a second set of instructions which
define the one or more supervisor operations and the one or
more transformed operations; sending the second set of
instructions to a remote client computer.

In an embodiment, wherein each object of the one or more
objects includes an original identifier, the method comprises
transforming the original identifier for each object, of the one
or more objects, to produce to a corresponding transformed
identifier; updating each object of the one or more objects to
include the corresponding transformed identifier; modifying
the first set of instructions to include the one or more super-
visor operations, which reference the one or more objects by
the corresponding transformed identifier for each object; ren-
dering the second set of instructions which define the one or
more original operations and the one or more objects.

In an embodiment, the method comprises transforming an
original identifier that is included in each object, of the one or
more objects, to produce to a corresponding transformed
identifier; updating each object of the one or more objects to
include the corresponding transformed identifier; modifying
the first set of instructions to include the one or more super-
visor operations, which when executed in a runtime environ-
ment, cause: intercepting a call to an operation; determining
the operation references a particular object by a particular
transformed identifier; terminating the call without perform-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing the operation; rendering the second set of instructions
which define the one or more objects.

In an embodiment, the one or more supervisor operations,
which when executed in a runtime environment, cause inter-
cepting a call to an operation; sending, to an intermediary
computer, a set of telemetry data indicating that the call to the
operation was made; performing the operation; receiving,
from the remote client computer, the set of telemetry data;
storing, in a database, profiling data indicating that the call to
the operation was made.

In an embodiment, a method comprises intercepting, from
a web server computer, over HTTP, an original HTML docu-
ment and a set of original JavaScript instructions that define
one or more objects in an original DOM and one or more
original JavaScript methods that are based, at least in part, on
the one or more objects; injecting one or more supervisor
JavaScript methods that are based, at least in part, on the one
or more objects; transforming the one or more original Java-
Script methods to produce one or more transformed JavaS-
cript methods that are based, at least in part, on the one or
more supervisor JavaScript methods; rendering a new HTML
document and a new set of JavaScript instructions which
define the one or more supervisor JavaScript methods, and the
one or more transformed JavaScript methods; sending the
new HTML document and the new set of JavaScript instruc-
tions to a remote client computer.

3.0 Example Network Topology

FIG. 1 illustrates a system comprising a server security
system, in an example embodiment. System 100 includes
web infrastructure 105, client computer 199, intermediary
computer 130, data store 140, and management computer 150
distributed across a plurality of interconnected networks.
While each of the components listed above are illustrated as if
running on a separate, remote computer from each other, one
or more of the components listed above may be part of and/or
executed on the same computer. For example, HT'TP inter-
mediary computer 130, data store 140, web infrastructure
105, and/or management computer 150 may be executed on
the same computer, local area, and/or wide area network.
Additionally or alternatively, intermediary computer 130 is a
proxy server for web infrastructure 105. Additionally or alter-
natively, intermediary computer 130 may be physically and/
orlogically between a router and web infrastructure 105, such
that all network data sent to, and/or sent from, web infrastruc-
ture 105 over one or more protocols may be intercepted by
intermediary computer 130.

3.1 Browser

Browser 195 may be a browser that is executed on client
computer 199 and operated by a user using client computer
199. For example, browser 195 may be a web browser that is
configured to request data from web infrastructure 105, and
receive and execute HTML, CSS, and/or JavaScript. FIG. 3
illustrates a more detailed view of a web browser, in an
example embodiment. While browser 195 may be described
in more detail in FIG. 3, using the particular arrangement
illustrated in FIG. 3 is not required in other embodiments.
Referring now to FIG. 3, browser 195 includes runtime envi-
ronment 300 and browser frontend 390. Runtime environ-
ment 300 may execute and maintain supervisor unit 310 and
DOM 350.

3.1.1 Browser Frontend

Browser frontend 390 may cause one or more objects to be
presented and/or updated visually and/or audibly to a user
using client computer 199. Browser frontend 390 may receive
one or more inputs. For example, in response to a user press-
ing a particular button on a mouse or keyboard coupled to
client computer 199, browser frontend 390 may receive data

US 9,356,954 B2

9

from the operating system running on client computer 199
indicating that a user pressed the particular button.

Browser frontend 390 and runtime environment 300 may
be communicatively coupled. For example, in response to
receiving the data from the operating system, browser fron-
tend 390 may call an operation, or cause an operation to be
called, such as untransformed method call 312, method call
314, and/or transformed method call 316. One or more of the
calls may be intercepted by supervisor unit 310. If an opera-
tion is executed, which operates on one or more objects in
DOM 350, then browser frontend 390 may update the user
interface accordingly.

3.1.2 Supervisor Unit

Supervisor unit 310 manages calls to one or more opera-
tions and/or objects that operate on and/or reference one or
more objects in DOM 350, such as object 352 and secure
object 354. Additionally or alternatively, supervisor unit 310
may log and/or send telemetry data describing which opera-
tion(s) were called, what parameters were passed, the call
stack that led up to the called operation(s), which object(s)
were referenced, and/or any other information regarding the
state of runtime environment 300 or the supervisor unit. For
purposes of illustrating clear examples and for convenience,
the supervisor unit 310 may represent, in the form of a single
functional unit, a set of one or more supervisor operations.

Supervisor unit 310 may manage execution of each opera-
tion in one or more modes, such as compatibility mode,
profiling mode, and/or enforcing mode. Each mode may be
applied to one or more operations independently. For
example, supervisor unit 310 may manage the execution of a
first operation in compatibility mode, a second operation in
profiling mode, a third operation in enforcing mode, and a
forth operation in compatibility mode and profiling mode.
However, supervisor unit 310 need not manage execution of a
fifth operation. Each mode is discussed in detail herein.

3.2 Web Infrastructure

Returning to FIG. 1, web infrastructure 105 may be one or
more server computers that receive requests for data from
users, such as a user using browser 195, through intermediary
computer 130. In response, web infrastructure 105 may send
data to browser 195, through intermediary computer 130. As
illustrated in FIG. 1 the data sent from web infrastructure 205
may include instructions: HTML, JavaScript, and CSS 110.

FIG. 2 illustrates a web infrastructure in an example
embodiment. The web infrastructure 105 may be described
with reference to original web server computer 202 and third
party web server computers 206 in FIG. 2, but using the
particular arrangement illustrated in FIG. 2 is not required in
other embodiments.

Original web server computer 202 may be a server com-
puter that receives requests for data and responds with data.
For example, original web server computer 202 may be an
HTTP-based web server that receives HTTP requests and
responds with data comprising HTML, CSS, and/or JavaS-
cript instructions. Additionally or alternatively, original web
server computer 202 may respond with data that references
additional data on other server computers, such as third party
web server computers 206.

Third party web server computers 206 may be one or more
server computers that store additional data referenced by
instructions sent from original web server computer 202. For
example, data from original web server computer 202 may
include a reference to a JavaScript file stored on third party
web server computers 206. Accordingly, a browser, or a
browser backend, may request the referenced JavaScript file
from third party web server computers 206. Also for example,
data from original web server computer 202 may include a

10

15

20

25

30

35

40

45

50

55

60

65

10

reference to an image stored on third party web server com-
puters 206. Accordingly, a browser may request the refer-
enced image from third party web server computers 206.

3.3 Intermediary

Returning now to FIG. 1, intermediary computer 130 may
intercept instructions sent from web infrastructure 105, gen-
erate new instructions, add supervisor instructions, and send
the new instructions to browser 195. For example, interme-
diary computer 130 may intercept HTML, JavaScript, and
CSS 110, add supervisor instructions 135 to implement a set
of supervisor operations, generate HTML, JavaScript, and
CSS 190 (which may be different than HTML, JavaScript,
and CSS 110), and send HTML, JavaScript, CSS 190, and
supervisor instructions 135 to browser 195. Additionally,
intermediary computer 130 may intercept a request from
browser 195, generate a new, modified request, and send the
new, modified request to web infrastructure 105.

In FIG. 2, intermediary computer 130 may be an HTTP
intermediary that intercepts and modifies HTML, JavaScript,
CSS, and HTTP requests for HTTP web browsers. However,
intermediary computer 230 may be an intermediary for any
other standard and/or proprietary protocol. Intermediary
computer 130 may also add supervisor instructions to the
modified HTML, JavaScript, and/or CSS. Furthermore, each
of the components discussed, which intermediary computer
130 is comprised of, may be configured to perform any of the
processes and/or methods discussed herein for any standard
and/or proprietary protocol.

Intermediary computer 130 may be a server computer that
is located on the same network as web infrastructure 105.
Additionally or alternatively, intermediary computer 130
may be topologically located between a public-facing router
and web infrastructure 105, logically and/or physically.
Accordingly, requests from browser 195 to web infrastructure
105 may be passed through and/or modified by intermediary
computer 130. Furthermore, instructions from web infra-
structure 105 to browser 195 may be passed through and/or
modified by intermediary computer 130.

FIG. 2 illustrates, among other things, a more detailed view
of intermediary computer 130, in an example embodiment.
The intermediary computer 130 may be described with ref-
erence to several components illustrated in FIG. 2 and dis-
cussed in detail below, but using the particular arrangement
illustrated in FIG. 3 is not required in other embodiments.
Turning now to FIG. 2, intermediary computer 130 may com-
prise protocol client module 232, browser backend 234, for-
ward transformer 236, protocol server module 238, transac-
tion store 240, reverse transformer 242, and telemetry handler
250. In an embodiment, each of the functional units of inter-
mediary computer 130 may be implemented using any of the
techniques further described herein in connection with FIG.
7; for example, the intermediary computer may comprise a
general-purpose computer configured with one or more
stored programs which when executed cause performing the
functions described herein for the intermediary computer, or
a special-purpose computer with digital logic that is config-
ured to execute the functions, or digital logic that is used in
other computing devices.

3.3.1 Protocol Client Module

Protocol client module 232 may intercept data over any
standard or proprietary protocol. For example, protocol client
module 232 may intercept data over HTTP. Accordingly,
protocol client module 232 may be communicatively coupled
with web infrastructure 105, original web server computer
202, and third party web server computers 206.

US 9,356,954 B2

11

3.3.2 Browser Backend

Browser backend 234 may be an HTTP-based headless
browser. Additionally or alternatively, browser backend 234
may be a headless browser based on one or more other stan-
dard and/or proprietary protocols. Browser backend 234 may
make requests for additional data. For example, if instructions
received from protocol client module 232 reference addi-
tional instructions stored on a third party web server, browser
backend 234 may request the additional instructions through
protocol client module 232.

Browser backend 234 may perform and/or parse one or
more instructions intercepted by protocol client module 232.
After performing and/or parsing the instructions, browser
backend 234 may notify forward transformer 236 to begin
generating new instructions based on the objects and/or
operations that are currently in memory. Browser backend
234 may generate and/or store the objects and/or operations
in memory by parsing the one or more instructions inter-
cepted by protocol client module 232. Additionally or alter-
natively, browser backend 234 may be a headless browser that
may generate and/or store the object and/or operations in
memory by executing at least a portion of the one or more
instructions intercepted by protocol client module 232.

3.3.3 Forward Transformer

Forward transformer 236 may operate on the objects and/or
operations created by browser backend 234, generate one or
more attribute maps and/or DOM maps, render a new set of
instructions based on the one or more operations and/or
objects in memory, and add supervisor instructions to the
rendered instructions, based on one or more configurations
specified in configuration 132. For example, browser backend
234 may modify the objects and/or operations in memory
according to one or more real-time polymorphic methods:
modifying one or more object identifiers, attribute, or rela-
tionship(s) with one or more other objects. Forward trans-
former 336 may send the rendered instructions to protocol
server module 338. Forward transformer 336 may send the
attribute maps and/or DOM maps to transaction store 240.

The supervisor instructions added need not be same super-
visor instructions for each set of instructions rendered. For
example, if configuration 132 indicates that a set of supervi-
sor operations should profile a particular page, then forward
transformer 236 may add supervisor instructions, which
when executed, send telemetry data to intermediary computer
130. However, if configuration 132 changes and now indi-
cates that the added set of supervisor operations should
enforce transformations in the particular page, then forward
transformer 236 may add different supervisor instructions,
which when executed, prevent calls to non-transformed
operations from being executed.

3.3.4 Protocol Server Module

Protocol server module 238 may receive the instructions
generated by forward transformer 236 and send the generated
instructions to browser 195. Additionally or alternatively,
protocol server module 238 may intercept requests from
browser 195 and forward the requests to transaction store 240.

3.3.5 Transaction Store

Transaction store 240 may receive requests intercepted by
protocol server module 238 from browser 195. Transaction
store 240 may retrieve one or more attribute maps and/or
DOM maps, based on data in the request, and forward the
request with the retrieved one or more attribute maps and/or
DOM maps to reverse transformer 242. Accordingly, trans-
action store 240 may be communicatively coupled with
reverse transformer 242.

10

25

30

40

45

55

12

3.3.6 Reverse Transformer

Reverse transformer 242 may transform requests inter-
cepted by protocol server module 238, which are based on
instructions generated by forward transformer 236, into
requests that would have been generated by browser 195 had
browser 195 received the original instructions sent from
original web server computer 202. Reverse transformer 242
may transform requests based on the one or more attribute
maps and/or DOM maps retrieved by transaction store 240.
Reverse transformer 242 may send the transformed request to
original web server computer 202 through protocol client
module 232.

3.3.7 Telemetry Handler

Telemetry handler 250 may receive telemetry data from
browser 195. Telemetry handler 250 may store the telemetry
data, or data derived from the telemetry data, in data store
140. For example, telemetry handler 250 may receive telem-
etry data that transformed method 316 was called, and that an
object identifier was correctly derived when the modified
method was executed.

3.4 Management Computer

Returning now to FIG. 1, a user, such as an administrator
for web infrastructure 105, may use management computer
150 to retrieve data from data store 140. For example, man-
agement computer 150 may display profiling data stored in
data store 140 through profiling interface 160. Profiling inter-
face 160 may present profiling data in data store 140 to help
an administrator determine whether intermediary computer
130 is successfully transforming one or more operations,
which are defined in one or more pages, on one or more sites.

Management interface 170 may present data indicating the
current mode(s) a supervisor unit is implementing for one or
more operations, defined in one or more pages, on one or
more sites, as defined in configuration 132. Management
interface 170 may also provide controls for a user to change
the mode(s) a supervisor unit should impose on one or more
operations for each page and/or site. Thus, a user, through
management computer 150, may modify configuration 132
based on the profiling data displayed. Intermediary computer
130 may update the behavior of the added set of supervisor
operations based on modified configuration 132.

While profiling interface 160 and management interface
170 and are illustration as if separate interfaces, management
interface 170 and profiling interface 160 may be the same
interface. For example, a single interface may display
whether a transformed operation was correctly transformed.
The single interface may also present controls to change the
mode implemented by the set of supervisor operations for the
transformed operation. Accordingly, in an embodiment, pro-
filing interface 160 and management interface 170 are the
same interface. For example, management computer 150 may
cause profiling data to be displayed, which indicates that a
particular operation is transformed correctly 100% of the
time for a particular web page. Management computer 150
may also cause to display a button near the profiling data,
which when selected causes configuration 132 to be updated
to indicate that the set of supervisor operations added to the
particular web page should use enforcement mode for the
particular operation.

4.0 Modes and Mode Processes

In an embodiment, a data processing method may be con-
figured to intercept the instructions associated with a web
page from a server computer and generate new, different
instructions based on the intercepted instructions, and add a
set of supervisor operations. In an embodiment, a data pro-
cessing method may be configured to add a new, different set
of supervisor operations than a previously generated set of

US 9,356,954 B2

13

supervisor operations, based on a configuration that assigns a
mode globally and/or specifically to one or more operations
on one or more pages and/or sites. For purposes of illustrating
clear example, embodiments discussed herein may send and/
or receive HTML and/or JavaScript instructions over HTTP.
However, in other embodiments, the methods and processes
discussed herein my use other standard and/or proprietary
instructions over other standard and/or proprietary
protocol(s).

4.1 Mode Processes

To illustrate clear examples of various modes in a set of
supervisor operations, program code snippets are provided
herein according an example embodiment. However, other
embodiments need not use these specific snippets. Further-
more, each snippet may be discussed with reference to FIG. 3,
however the particular embodiment illustrated in FIG. 3 is not
required in other embodiments.

4.1.1 Profiling Mode

In profiling mode, a set of supervisor operations may report
calls made to one or more operations. For example, a set of
supervisor operations may send and/or store telemetry data,
which may comprise information about one or more calls to
one or more operations, to an intermediary server computer
and/or other data store. An administrator may review the
telemetry data and determine, going forward, whether the set
of supervisor operations should switch to enforcing mode or
compatibility mode for one or more operations. In profiling
mode, a set of supervisor operations need not prevent the
originally called method from being performed.

Snippet 1 is an example set of instructions written in Java-
Script for a set of supervisor operations, which when
executed by a JavaScript runtime environment, in an embodi-
ment, intercepts a call to an operation in profiling mode.

Snippet 1:

line 1: var allowed__method326 = method314;
line 2: var method3 14 = function(objectID){

line 3: sendTelemetry(["method314”, objectID]);
line 4: allowed__method326(objectID);
line 5: };

In line 1 of Snippet 1, an original method, which is origi-
nally aliased as “method314” is assigned a new alias:
“allowed_method326”. Thus, after line 1 is parsed and/or
executed, the original method may be called using the new
alias.

In line 2, the original alias, “method314”, is set as an alias
for a new method defined in lines 2 through 5. Thus, after lines
2 through 5 are parsed and/or executed, the new method may
be called using the original method’s original alias:
“method314”. Supervisor unit 310 may intercept calls, such
as method call 314, which was called to invoke the original
method. In response, supervisor unit 310 may perform the
new method currently aliased as “method314”.

Inresponseto intercepting method call 314, supervisor unit
310 may cause line 3 and line 4 to be executed. In line 3,
telemetry data is sent to the server, which describes the call
that was made and which object identifier was used. For
example, supervisor unit 310 may send DOM telemetry 330
to intermediary computer 130. In line 4, the original method
is called with allowed method call 326, using the new alias:
“allowed_method326”. Thus, supervisor unit 310 intercepts
method call 314, sends telemetry data to intermediary com-
puter 130, and then executes the original method.

10

20

25

30

35

40

45

14

4.1.2 Enforcing Mode

In enforcing mode, a set of supervisor operations may
block calls to untransformed operations. Additionally or
alternatively, in enforcing mode, a set of supervisor opera-
tions may block a call to an original operation if one or more
objects and/or object identifiers referenced by the operation
or the call are not transformed.

4.1.2.1 Enforcing Transformed Operations

Snippet 2 is an example set of instructions written in Java-
Script for a set of supervisor operations, which when
executed by a JavaScript runtime environment in an embodi-
ment blocks calls to untransformed operations.

Snippet 2:

line 1: var allowed__method326 = method314;

line 2: var method3 14 = function(objectID){

line 3: blocked__method324(”malware detected”);
line 4: };

line 5: var transformed__method314(objectID) {

line 6: allowed__method326(objectID);

line 7: }

In line 1 of Snippet 2, an original method, which is origi-
nally aliased as “method314” is assigned a new alias:
“allowed_method326”. Thus, after line 1 is parsed and/or
executed, the original method may be called using the new
alias.

In line 2, the original alias, “method314”, is set as an alias
for a first new method defined in lines 2 through 4. Thus, after
lines 2 through 4 are parsed and/or executed, the first new
method may be called using the original method’s original
alias: “method314”. Supervisor unit 310 may intercept calls,
such as method call 314, which was called to invoke the
original method. In response, supervisor unit 310 may per-
form the first new method currently aliased as “method314”,
which blocks the original method from being called.

Inresponse to intercepting method call 314, supervisor unit
310 may cause line 3 to be executed. In line 3, supervisor unit
310 calls a blocking method: “blocked_method324”. The
blocking method may return control to the caller. Addition-
ally or alternatively, the blocking method may cause an alert
to be shown, an exception to be raised, telemetry data to be
sent, and/or any other method or operation to warn the user or
an administrator of the intermediary computer or web infra-
structure.

No instruction is included in the first new method to call the
original method using the new alias: “allowed_method314”.
Thus, supervisor unit 310 may intercept method call 314, and
block the original method currently aliased as “allowed_
method326” from being executed when the “method314”
alias is used.

In line 5, a new alias, “transformed_method314”, is set as
an alias for a second new method defined in lines 5 through 7.
Thus, after lines 5 through 7 are parsed and/or executed, the
second new method may be called using the new alias: “trans-
formed_method314”. Supervisor unit 310 may intercept
calls, such as transformed method call 316, which was
inserted by intermediary computer 130. In response, super-
visor unit 310 may perform the second new method, aliased as
“transformed_method314”, issuing allowed method call 326.
Allowed method call 326 may cause the original method,
aliased as “allowed_method326”, to be called.

4.1.2.2 Enforcing Transformed Object Identifiers

Supervisor unit 310 may use enforcing mode to block calls
to transformed operations in other embodiments. For
example, Snippet 3 is an example set of instructions written in
JavaScript for a set of supervisor operations, which when

US 9,356,954 B2

15

executed by a JavaScript runtime environment in an embodi-
ment, blocks calls that reference one or more objects that are
not transformed.

Snippet 3:

line 1: var allowed__method326 = method314;
line 2: var method3 14 = function(objectID) {

line 3: if(isObjectTransformed(objectID))

line 4: blocked__method324(”malware detected”);
line 5: else

line 6: allowed__method326(objectID);

line 7: };

In line 1 of Snippet 3, an original method, which is origi-
nally aliased as “method314” is assigned a new alias:
“allowed_method326”. Thus, after line 1 is parsed and/or
executed, the original method may be called using the new
alias.

In line 2, the original alias, “method314”, is set as an alias
for a new method defined in lines 2 through 7. Thus, after lines
2 through 7 are parsed and/or executed, the new method may
be called using the original method’s original alias:
“method314”. Supervisor unit 310 may intercept calls, such
as method call 314, which was called to invoke the original
method. In response, supervisor unit 310 may perform the
new method currently aliased as “method314”, which pre-
vents the original method from being called if the identifier
stored in objectID is not a transformed object; otherwise, the
original method is executed with the transformed identifier
stored in objectID.

Inresponseto intercepting method call 314, supervisor unit
310 may cause line 3 to be executed. In line 3, a method is
called that determines whether the object passed to the
method, is a transformed object, or if the object identifier
passed to the method is a transformed object identifier. Deter-
mining whether an identifier is a transformed identifier may
be based on one or more methods. For example, a table of
transformed object identifiers may be maintained; if the
object identifier is found in the table, then the object identifier
is a transformed identifier. Additionally or alternatively, a list
of original object identifiers that have been transformed may
be maintained; if the object identifier is found in the table,
then the object identifier is not a transformed identifier. Addi-
tionally or alternatively, the identifier may contain data or
labels that indicate it is a transformed identifier. For example,
if the object identifier includes the string “secure”, then the
identifier may be determined to be a transformed identifier.

If, in line 3, the object identifier is determined to not be a
transformed identifier, then control proceeds to line 4 and
supervisor unit 310 calls a blocking method: “blocked_
method324”. For purposes of illustrating a clear example,
assume that the identifier stored in variable objectID includes
the original identifier, “354” to secure object 354. Accord-
ingly, supervisor unit 310 calls a blocking method: “blocked_
method324”.

If, in line 3, the object identifier is determined to be a
transformed identifier, such as “secure object 354”, then con-
trol proceeds to line 6 and supervisor unit 310 may make
allowed method call 326, which calls the original method,
using the new alias: “allowed_method326”, which operates
on secure object 354.

4.1.3 Compatibility Mode

In compatibility mode, a set of supervisor operations may
allow original operations to be executed regardless of
whether the called operation has an alternate, transformed
alias or references one or more original or transformed object
identifiers. For example, a set of supervisor operations in

10

15

20

30

35

45

50

55

60

16

compatibility mode may report the results of a transformed
method against the results of the corresponding original
method to determine whether the transformed method is
transformed correctly. The results, or the result of the com-
parison, may be sent to intermediary computer 130 as DOM
telemetry data 330.

Snippet 4 is an example set of instructions written in Java-
Script for a set of supervisor operations, which when
executed by a JavaScript runtime environment in an embodi-
ment, intercepts a call to an operation in compatibility mode.
For purposes of illustrating a clear example, assume that
“some_new_method” is an alias for a new method that was
added by intermediary computer 130, which is supposed to be
a transformation of the original method, originally aliased as
“method314”.

Snippet 4:

line 1: var untransformed__method314 = method314;

line 2: var transformed__method314 = function(objectID){

line 3: return some__new__method(objectID);

line 4: };

line 5: var test__transformed__method314 =
function(objectID) {

line 6: var vl = untransformed__method312(objectID);
line 7: var v2 = transformed__method316(objectID);
line 8: if (v1.compare(v2)) {
line 9: sendTelemetry(["transformed__method316”,
objectID, “success”™]);
line 10: else {
line 11:
sendTelemetry([”transformed__method316”,
objectID, “failed™]);
line 12:
line 13: b

In line 1 of Snippet 4, an original method, which is origi-
nally aliased as “method314” is assigned a first new alias:
“untransformed_method314”. Thus, after line 1 is parsed
and/or executed, the original method may be called using the
first new alias: “untransformed_method314”.

Inline 2, a second new alias, “transformed_method314”, is
set as an alias for a first new method defined in lines 2 through
4. Thus, after lines 2 through 4 are parsed and/or executed, the
first new method may be called using the second new alias:
“transformed_method314”. Upon receiving a call for the first
new method, line 3 is executed, which calls a new method,
which is expected to return the same value as original method.

In line 5, a new alias, “test_transformed_method314”, is
set as an alias for a second new method defined in lines 5
through 13. Thus, after lines 5 through 13 are parsed and/or
executed, the second new method may be called using the new
alias: “test_transformed_method314”. In line 6, the original,
untransformed method is called and the resulting value is
stored in a variable v1. In line 7, the transformed method is
called and the resulting value is stored in variable v2. In line
8, the results are compared. If the results are determined to be
equal, then control proceeds to line 9. In line 9, telemetry data
indicating that the original method was successfully trans-
formed is sent to intermediary computer 130. Otherwise, if
the results are determined not to be equal, then control pro-
ceeds to line 11. In line 11, telemetry data indicating that the
original method was not successfully transformed is sent to
intermediary computer 130. Other embodiments may add to,
remove from, reorder, and/or modify any of the telemetry data
sent to intermediary computer 130.

4.1.4 Selectively Intercepting Calls

A set of supervisor operations need not intercept all calls to
all methods. A set of supervisor operations may selectively
intercept method calls by selectively reassigning the original

US 9,356,954 B2

17

aliases for particular methods and/or operations. For
example, in FIG. 3, supervisor unit 310 need not reassign the
alias for a particular untransformed method, which operates
on untransformed object 352. Accordingly, supervisor unit
310 may fail to intercept untransformed method call 312.

4.1.5 Updating Calls to Transformed Operations

When an operation is transformed, instructions that make
calls to the original operation may be transformed as well. For
example, if a JavaScript method, “myMethod”, is trans-
formed to use a new alias, “mySecureMethod”, then instruc-
tions that call the original method using the alias
“myMethod” may also be updated to use the new alias:
“mySecureMethod”. However, malicious code on the remote
client computer, which has not passed through intermediary
computer 130, is not transformed to use the new transformed
aliases.

4.1.6 Example Process for a Supervisor Unit

FIG. 5 illustrates a process for a supervisor unit intercept-
ing a call and implementing one or more modes, in an
embodiment. For purposes of illustrating a clear example,
FIG. 5 may be described with reference to FIG. 3. In step 510,
a supervisor unit intercepts a call to an operation that refer-
ences an object by an identifier. For example, supervisor unit
310 intercepts transformed method call 316, which refer-
ences secure object 354 in DOM 350 with the identifier
“354”.

In step 520, the supervisor unit determines whether the
intercepted call is allowed. For example, supervisor unit 310
may be configured to regulate calls in enforcement mode,
using one or more methods discussed herein. If supervisor
unit 310 determines that the transformed method call 316 is
allowed, then control proceeds to step 530; otherwise, control
proceeds to step 550. For purposes of illustrating a clear
example, assume that supervisor unit 310 determines that
transformed method call 316 is allowed, and control proceeds
to step 530.

In step 530, the supervisor unit determines whether the
intercepted call is allowed to reference the object using the
identifier. For example, supervisor unit 310 may use one or
more of the methods discussed herein to determine whether
the reference to secure object 354 received in step 510 is
allowable. If so, control proceeds to step 540; otherwise,
control proceeds to step 550. For purposes of illustrating a
clear example, assume that supervisor unit 310 determines
that the identifier received in step 510, “354”, is a transformed
identifier and is allowed.

In step 540, the supervisor unit calls the method to perform
the intended operation. For example, supervisor unit 310 may
make allowed method call 326, which operates on secure
object 354.

In step 550, the supervisor unit determines whether telem-
etry data should be sent to an intermediary server computer. If
so, control proceeds to step 560; otherwise, control termi-
nates in step 595. For purposes of illustrating a clear example,
assume supervisor unit 310 is configured to operate in profil-
ing mode for all calls intercepted by supervisor unit 310.
Thus, control proceeds to step 560.

In step 560, the supervisor unit sends telemetry data to an
intermediary computer. For example, supervisor unit 310
may send telemetry data describing which call was inter-
cepted and/or any other data related to the intercepted call,
such as whether the call was allowed or successfully trans-
formed. Control then terminates in step 595.

4.2 Adding Supervisor Operations to a Set of Instructions

FIG. 4 illustrates a process for intercepting instructions
from a server computer, rendering new instructions, adding a
set of supervisor operations, and sending the new instructions

20

40

45

50

55

18

with the set of supervisor operations to the intended client
computer, in an example embodiment. For purposes of illus-
trating a clear example, FIG. 4 may be described with refer-
ence to FIG. 2, but using the particular arrangement illus-
trated in FIG. 2 is not required in other embodiments.

Turning now to step 410, an intermediary computer inter-
cepts a first set of instructions from a remote server computer.
For example, protocol client module 232 may receive instruc-
tions from original web server computer 202, in response to a
request from visitor browser 195.

In step 420, the intermediary computer parses the inter-
cepted instructions. For example, protocol client module 232
may send the HTML and/or JavaScript instructions to
browser backend 334. Browser backend 334 may parse the
received HTML and JavaScript instructions. For purposes of
illustrating a clear example, assume that the intercepted set of
instructions include instructions that define an original Java-
Script method, which operates on an original object using an
original object identifier.

In step 430, the intermediary computer transforms one or
more objects. For example, forward transformer 236 may
transform the original object to produce a transformed object.
Specifically, forward transformer 236 may transform the
original object identifier to produce a transformed object
identifier, which identifies the transformed object.

In step 440, the intermediary computer transforms one or
more operations and adds a set of supervisor operations to the
new set of instructions based on a configuration. For purposes
ofillustrating a clear example, assume that configuration 132
indicates supervisor instructions should be added, which
when executed, perform the original JavaScript method in
profiling mode. Accordingly, forward transformer 236 trans-
form the original operation and may add supervisor instruc-
tions, which when executed, intercept calls to the original
method and implement the original method in profiling mode.
As discussed herein, the modes that a set of supervisor opera-
tions uses for operations in a web page may be different based
on changes in the configuration, such as configuration 132.
Thus, the set of supervisor operations may implement a dif-
ferent set of modes for a first intercepted page than a second
intercepted page, even if the first intercepted page and the
second intercepted page are the same page. Furthermore,
since operations and/or objects may be transformed differ-
ently each time the same set of instructions are intercepted,
the supervisor instructions may be different for each inter-
cepted set of instructions.

In step 450, the intermediary computer sends a second set
of instructions to the remote client computer. For example,
forward transformer 236 sends a second set of HTML and/or
JavaScript instructions, which define the transformed object,
the transformed JavaScript method, and the added set of
supervisor operations.

4.3 Adding Supervisor Operations to a Set of Instructions
Based on an Updated Configuration

FIG. 6 illustrates a process for retrieving telemetry data,
updating a configuration of a set of supervisor modes and/or
options based on profiling data, intercepting instructions
from a server computer, rendering new instructions that
include a set of supervisor instructions that define operations
based on the updated configuration, and sending the new
instructions with the set of supervisor operations to the
intended client, in an example embodiment. For purposes of
illustrating a clear example, FIG. 6 may be described with
reference to FIG. 2, but using the particular arrangement
illustrated in FIG. 2 is not required in other embodiments.

Turning now to step 610, in FIG. 6, an intermediary com-
puter receives telemetry data over HTTP. For purposes of

US 9,356,954 B2

19

illustrating a clear example, assume that before step 610, a
first set of HTML and JavaScript instructions with a particular
JavaScript method was intercepted; the instructions were
transformed and a set of supervisor operations was added to
produce a second set of HITML and JavaScript instructions;
the second set of HTML and JavaScript instruction were sent
to the intended remote client computer. Browser 195, running
on client computer 199, may send telemetry data over HTTP
to telemetry handler 250 indicating that a transformed Java-
Script method, aliased as “transformed_method316”, was
executed successfully.

In step 615, the intermediary computer extracts profiling
data. For example, telemetry handler 250 may store profiling
data based on the telemetry data received in step 610. The
profiling data may indicate that the transformed JavaScript
method aliased as “transformed _method316” was success-
fully executed for an instance of a web page identified as the
“home page” on a particular web site. The profiling data may
comprise data included in, or derived from, the telemetry
data. For example, telemetry handler 250 may determine that
the original alias of the transformed JavaScript method is
“method316”. Also for example, the profiling data may com-
prise data that associates the original alias and/or the trans-
formed alias with the particular web page, “home page”, for
the particular web site. Also for example, the profiling data
may comprise a set of data that describes how often an opera-
tions and/or objects are successtully transformed.

In step 620, the intermediary computer stores the profiling
data. For example, intermediary computer 130 stores the pro-
filing data extracted in step 615 in data store 140.

In step 625, a management computer displays profiling
data through a profiling user interface. For example, in
response to input from a user, management computer 150
may send a request for profiling data to data store 140. The
request may include additional criteria. Data store 140 may
return profiling data that matches the criteria to management
computer 150. The criteria may include a one or more object
identifiers, operations, web pages, web sites, dates, times,
and/or any other profiling data stored in data store 140. The
criteria may also specify one or more operations data store
140 should perform before sending the matching profiling
data to the management computer 150, such as grouping,
aggregating, and/or any other database operations. After
receiving the requested profiling data, management computer
150 may cause the profiling data to be displayed through
profiling interface 160.

In step 630, the management computer receives input
through a management interface and updates a configuration.
For example, a user may determine that a particular trans-
formed JavaScript method, originally aliased as
“method316”, was successfully transformed and executed
more than a particular threshold to begin having the set of
supervisor operations use the enforcing mode on calls to the
transformed method. Accordingly, a user may select an input
that indicates, going forward, when the “home page” is inter-
cepted, a set of supervisor operations may use the enforcing
mode to enforce use of the transformed method and block use
of the original JavaScript method. Management computer
150 may update configuration 132 accordingly.

In step 635, the intermediary computer intercepts HTML
and JavaScript instructions from a web server computer over
HTTPto aremote client computer running a web browser. For
example, protocol client module 232 may receive instructions
from original web server computer 202 in response to a
request from browser 195 for the particular page: “home
page”. The instructions may comprise HIML and JavaScript
instructions. For purposes of illustrating a clear example,

10

15

20

25

30

35

40

45

50

55

60

65

20

assume that the intercepted JavaScript instructions define a
JavaScript method aliased as “method316”.

In step 640, the intermediary computer parses the inter-
cepted HTML and JavaScript instructions and transforms one
or more operations and/or objects defined in the instructions.
For example, intermediary computer 130 may parse the inter-
cepted HTML and JavaScript instructions and may transform
the JavaScript method originally aliased as “method316”, to
a transformed method aliased as “transformed_method316”.

In step 645, the intermediary computer transforms refer-
ences from original object identifiers in the intercepted
HTML and/or JavaScript instructions to transformed identi-
fiers. For example, references to the original JavaScript
method, “method316”, in the intercepted HTML and JavaS-
cript instructions may be transformed to reference the trans-
formed JavaScript method: “transformed_method316”.

In step 650, the intermediary computer adds supervisor
instructions to the transformed instructions to produce a new
set of HTML and JavaScript instructions. For example, inter-
mediary computer 130 may use one or more of the methods
discussed herein to add supervisor instructions based on con-
figuration 132 to the new set of HTML and JavaScript instruc-
tions. In this example, the added supervisor instructions,
when executed in a runtime environment, may intercept and
block calls made to the original JavaScript method
“method316”, and intercept and allow calls to the trans-
formed JavaScript method: “transformed_method316”. The
set of supervisor operations, when executed in the runtime
environment, may also block calls to the transformed JavaS-
cript method, “transformed_method316”, if the calls use
original object identifiers rather than transformed object iden-
tifiers.

In step 655, the intermediary computer sends the new set of
HTML and JavaScript instructions to the remote client com-
puter. For example, intermediary computer 130 may send the
new set of HTML and JavaScript instructions, which define
the set of supervisor operations and the transformed opera-
tions and/or objects, to browser 195 over HTTP.

5.0 Implementation Mechanisms—Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 7 is a block diagram that illustrates a
computer system 700 upon which an embodiment of the
invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose micro-
processor.

Computer system 700 also includes a main memory 706,
such as a random access memory (RAM) or other dynamic

US 9,356,954 B2

21

storage device, coupled to bus 702 for storing information and
instructions to be executed by processor 704. Main memory
706 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 704. Such instructions, when stored
in non-transitory storage media accessible to processor 704,
render computer system 700 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

Computer system 700 further includes a read only memory
(ROM) 708 or other static storage device coupled to bus 702
for storing static information and instructions for processor
704. A storage device 710, such as a magnetic disk or optical
disk, is provided and coupled to bus 702 for storing informa-
tion and instructions.

Computer system 700 may be coupled via bus 702 to a
display 712, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 714, includ-
ing alphanumeric and other keys, is coupled to bus 702 for
communicating information and command selections to pro-
cessor 704. Another type of user input device is cursor control
716, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 704 and for controlling cursor movement
ondisplay 712. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g.,y), that allows the device to specify positions in a plane.

Computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 700 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 700 in response to processor
704 executing one or more sequences of one or more instruc-
tions contained in main memory 706. Such instructions may
be read into main memory 706 from another storage medium,
such as storage device 710. Execution of the sequences of
instructions contained in main memory 706 causes processor
704 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 710. Volatile media
includes dynamic memory, such as main memory 706. Com-
mon forms of storage media include, for example, a floppy
disk, a flexible disk, hard disk, solid state drive, magnetic
tape, or any other magnetic data storage medium, a CD-ROM,
any other optical data storage medium, any physical medium
with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or car-
tridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
702. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 704
for execution. For example, the instructions may initially be

10

15

20

25

30

35

40

45

50

55

60

65

22

carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 702. Bus 702 carries the data to main memory 706,
from which processor 704 retrieves and executes the instruc-
tions. The instructions received by main memory 706 may
optionally be stored on storage device 710 either before or
after execution by processor 704.

Computer system 700 also includes a communication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that is connected to a local network 722. For
example, communication interface 718 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 718 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 718 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection through
local network 722 to a host computer 724 or to data equip-
ment operated by an Internet Service Provider (ISP) 726. ISP
726 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 728. Local network 722
and Internet 728 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 720 and
through communication interface 718, which carry the digital
data to and from computer system 700, are example forms of
transmission media.

Computer system 700 can send messages and receive data,
including program code, through the network(s), network
link 720 and communication interface 718. In the Internet
example, a server 730 might transmit a requested code for an
application program through Internet 728, ISP 726, local
network 722 and communication interface 718.

The received code may be executed by processor 704 as it
is received, and/or stored in storage device 710, or other
non-volatile storage for later execution.

6.0 Other Aspects of Disclosure

Using the networked computer arrangements, intermedi-
ary computer, and/or processing methods described herein,
security in client-server data processing may be significantly
increased. In particular, the use of browser programs may
become significantly more secure. Employing one or more of
the techniques discussed herein may effectively permit obfus-
cating data field and/or container identifiers and DOM modi-
fication for data that is financial, personal, or otherwise sen-
sitive so that attackers cannot determine which fields and/or
containers in a web page include the sensitive data. Conse-
quently, one or more various attacks, such as a denial of
service (“DOS”) attack, credential stuffing, fake account cre-
ation, ratings or results manipulation, man in the browser
attacks, reserving rival goods or services, scanning for vul-
nerabilities, and/or exploitation of vulnerabilities, are frus-

US 9,356,954 B2

23

trated because all fields and/or containers appear to the
attacker to be gibberish, or at least cannot be identified as
indicating credit card data, bank account numbers, personally
identifying information, confidential data, sensitive data, pro-
prietary data, and/or other data.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense. The 10

sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. A computer system configured to improve security of
client computers interacting with server computers through
an intermediary computer supervising one or more objects,
and comprising:

one Or more processors;

aprocessor logic coupled to the one or more processors and

configured to:

receive a first set of instructions from a server computer

that define the one or more objects;

render a second set of instructions that define the one or

more objects and one or more supervisor operations,
which when executed by a runtime environment on a
client computer, cause the runtime environment to:
intercept a call to a first operation on a remote client
computer that references a particular object of the one or
more objects; send a set of telemetry data to a server
computer indicating the particular object was referenced
by the first operation;

send the second set of instructions to the remote client

computer.

2. The computer system of claim 1, wherein the one or
more supervisor operations are configured to cause the runt-
ime environment to determine whether the first operation is
allowed to reference the particular object.

3. The computer system of claim 2, wherein the one or
more supervisor operations are configured to cause the runt-
ime environment to perform the first operation in response to
causing the runtime environment to determine that the first
operation is allowed to reference the particular object.

4. The computer system of claim 3, wherein the one or
more supervisor operations are configured to cause the runt-
ime environment to include data in the set of telemetry data
indicating that the first operation was allowed to reference the
particular object and the first operation was performed.

5. The computer system of claim 2, wherein the one or
more supervisor operations are configured to cause the runt-
ime environment to terminate the call without performing the
first operation in response to causing the runtime environment
to determine that the first operation is not allowed to reference
the particular object.

6. The computer system of claim 5, wherein the one or
more supervisor operations are configured to cause the runt-
ime environment to include data in the set of telemetry data
indicating that the first operation was not allowed to reference
the particular object and the call was terminated without
performing the first operation.

7. The computer system of claim 1, wherein a first identifier
is assigned to the particular object;

wherein the second set of instructions includes one or more

instructions, which when executed by the runtime envi-

15

25

30

35

40

45

55

o
o

24

ronment on the client computer, cause the runtime envi-
ronment to assign a second identifier to the particular
object;
wherein the one or more supervisor operations are config-
ured to cause the runtime environment to include data in
the set of telemetry data that indicates whether the first
operation referenced the particular object by the first
identifier or the second identifier.
8. The computer system of claim 1, wherein a first alias is
assigned to the first operation;
wherein the second set of instructions includes one or more
instructions, which when executed by the runtime envi-
ronment on the client computer, cause the runtime envi-
ronment to assign a second alias to the first operation;

wherein the one or more supervisor operations are config-
ured to cause the runtime environment to include data in
the set of telemetry data to the server computer that
indicates whether the call to the first operation was made
using the first alias or the second alias.

9. The computer system of claim 1, wherein the second set
of instructions includes one or more instructions that define a
second operation that is a transformation of the first opera-
tion;

wherein the one or more supervisor operations are config-

ured to cause the runtime environment to: perform the
first operation and collect a first result; perform the sec-
ond operation and collect a second result; determine
whether the first result is equal to the second result.

10. The computer system of claim 9, wherein the one or
more supervisor operations are configured to cause the runt-
ime environment to include data in the set of telemetry data
indicating that the first operation was successfully trans-
formed into the second operation in response to determining
that the first result is equal to the second result.

11. The computer system of claim 9, wherein the one or
more supervisor operations are configured to cause the runt-
ime environment to include data in the set of telemetry data
indicating that the first operation was not successfully trans-
formed into the second operation in response to determining
that the first result is not equal to the second result.

12. A method for improving security of a client computer
interacting with a server computer, the method comprising:

intercepting, in a runtime environment on a client com-

puter, a call to a first operation that references a particu-
lar object of one or more objects in memory on the client
computer,

sending a set of telemetry data to a server computer indi-

cating that the first operation, which references the par-
ticular object, was called;

wherein a first identifier is assigned to the particular object;

assigning a second identifier to the particular object;

including data in the set of telemetry data that indicates
whether the first operation referenced the particular
object by the first identifier or the second identifier;

wherein the method is performed by one or more comput-
ing devices.

13. The method of claim 12 further comprising determin-
ing whether the first operation is allowed to reference the
particular object.

14. The method of claim 13 further comprising, inresponse
to determining that the first operation is allowed to reference
the particular object:

performing the first operation;

including data in the set of telemetry data indicating that

the first operation was allowed to reference the particular
object and the first operation was performed.

US 9,356,954 B2

25

15. The method of claim 13 further comprising, in response
to determining that the first operation is allowed to reference
the particular object:

terminating the call without performing the first operation;

including data in the set of telemetry data indicating that

the first operation was not allowed to reference the par-
ticular object and the call was terminated without per-
forming the first operation.

16. A method for improving security of a client computer
interacting with a server computer, the method comprising:

intercepting, in a runtime environment on a client com-

puter, a call to a first operation that references a particu-
lar object of one or more objects in memory on the client
computer,

sending a set of telemetry data to a server computer indi-

cating that the first operation, which references the par-
ticular object, was called;

wherein a first alias is assigned to the first operation;

assigning a second alias to the first operation;

including data in the set of telemetry data to the server

computer that indicates whether the call to the first
operation was made using the first alias or the second
alias.

17. A method for improving security of a client computer
interacting with a server computer, the method comprising:

10

15

26

intercepting, in a runtime environment on a client com-
puter, a call to a first operation that references a particu-
lar object of one or more objects in memory on the client
computer,

sending a set of telemetry data to a server computer indi-

cating that the first operation, which references the par-
ticular object, was called;

performing the first operation and collecting a first result;

performing a second operation and collecting a second

result;

determining whether the first result is equal to the second

result.

18. The method of claim 17 further comprising, inresponse
to determining that the first result is equal to the second result,
including data in the set of telemetry data that indicates the
first operation was successfully transformed into the second
operation.

19. The method of claim 17 further comprising, in response
to determining that the first result is not equal to the second
result, including data in the set of telemetry data that indicates
that the first operation was not successfully transformed into
the second operation.

